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Classical Concepts in Quantum Programming
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The rapid progress of computer technology has been accompanied by a corresponding
evolution of software development, from hardwired components and binary machine
code to high level programming languages, which allowed to master the increasing
hardware complexity and fully exploit its potential.
This paper investigates, how classical concepts like hardware abstraction, hierarchical
programs, data types, memory management, flow of control, and structured program-
ming can be used in quantum computing. The experimental language QCL will be
introduced as an example, how elements like irreversible functions, local variables,
and conditional branching, which have no direct quantum counterparts, can be imple-
mented, and how nonclassical features like the reversibility of unitary transformation
or the nonobservability of quantum states can be accounted for within the framework
of a procedural programming language.
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1. QUANTUM PROGRAMMING

1.1. Quantum Programming Languages

From a software engineering point of view, we can regard the formalism of
Hilbert-space algebra as a specification language, as the mathematical descrip-
tion of a quantum algorithm is inherently declarative and provides no means to
derive a unique decomposition into elementary operations for a given quantum
hardware.

Low level formalisms like quantum circuits (Deutsch, 1989), on the other
hand, are usually restricted to specific tasks, such as the description of unitary
transformations, and thus lack the generality to express all aspects of nonclassical
algorithms.

The purpose of programming languages is therefore twofold, as they allow
to express the semantics of the computation in an abstract manner, as well as
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the automated generation of a sequence of elementary operations to control the
computing device.

1.2. Quantum Algorithms

In its simplest form, a quantum algorithm merely consists of a unitary trans-
formation and a subsequent measurement of the resulting state. For more “tradi-
tional” computational tasks, however, as e.g., searching or mathematical calcu-
lations, efficient quantum implementations often have the form of probabilistic
algorithms. Figure 1 shows the basic outline of a probabilistic nonclassical algo-
rithm with a simple evaluation loop.

More complex quantum algorithms, as e.g. Shor’s algorithm for quantum
factoring (Ekert and Jozsa, 1996; Shor, 1994), can also include classical random
numbers, partial measurements, nested evaluation loops, and multiple termination
conditions; thus the actual quantum operations are embedded into a classical
flow-control framework.

In the discussion of nonclassical algorithms, both aspects, the classical control
structure and the actual quantum operations, are usually treated separately and

Fig. 1. A simple nonclassical algorithm.
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often, only the latter is formally described (Wallace, 2001). In order to provide a
consistent formalism, a quantum programming language will have to resolve this
antagonism by generalizing existing classical programming concepts to the field
of quantum computing.

1.3. Structured Quantum Programming

In traditional computing science, programming languages can be categorized
as either logical (e.g., Prolog), functional (e.g., LISP), or procedural (e.g., Fortran,
Pascal), the latter being the most widely used, for the description of algorithms,
as well as the actual implementation of real world programs (Aaby, 1996).

Procedural programming languages can be characterized by

• explicit flow of control
• hierarchical program structure
• tight mapping between code and computation

which seems to fit most people’s way of reasoning about computational tasks. A
procedural language is called structured, if flow control is restricted to selection-
and loop-statements with well defined entry- and exit-points (e.g., Modula, Pascal
without goto-statement) (Dahl et al., 1972; Dijkstra, 1969).

Structured quantum programming is about extending these concepts into
the field of quantum computing while preserving their classical semantics. The
following table gives an overview of quantum language elements along with their
classical counterparts.

Classical concept Quantum analog

classical machine model hybrid quantum architecture
variables quantum registers
subroutines unitary operators
argument and return types quantum data types
local variables scratch registers
dynamic memory scratch space management
boolean expressions quantum conditions
conditional execution conditional operators
selection quantum if-statement
conditional loops quantum forking
none inverse execution of operators
none quantum measurement
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Fig. 2. Hybrid quantum architecture.

1.4. Hybrid Architecture

Structured quantum programming uses a classical universal language to de-
fine the actual sequence of elementary instructions for a quantum computer, so a
program is not intended to run on a quantum computer itself, but on a (probabilis-
tic) classical computer, which in turn controls a quantum computer and processes
the results of measurements. In the terms of classical computer science, this archi-
tecture can be described as a universal computer with a quantum Oracle (Figure 2).

From the perspective of the user, a quantum program behaves exactly like any
other classical program, in the sense that it takes classical input, such as startup
parameters or interactive data, and produces classical output.

The state of the controlling computer (i.e., program counter, variable values,
but also the mapping of quantum registers) is referred to as program state. The
quantum computer itself does not require any control logic, its computational state
can therefore be fully described by the common quantum state |�〉 of its qubits
(machine state).

2. THE PROGRAMMING LANGUAGE QCL

QCL (an acronym for “quantum computation language”) is an experimental
structured quantum programming language (Ömer, 1998). A QCL interpreter,
written in C++, including a numerical simulation library (libqc) to emulate the
quantum backend is available from

http://tph.tuwien.ac.at/~oemer/qcl.html

as free software under the terms of the GPL.
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2.1. Quantum Storage and Registers

The smallest unit of quantum storage in QCL is the qubit

Definition 1. (Qubit). A qubit or quantum bit is a quantum system whose state
|ψ〉 ∈ B can be fully described by a superposition of two orthonormal eigenstates
labeled |0〉 and |1〉, i.e., B = C2.

|ψ〉 = α |0〉 + β |1〉 with |α|2 + |β|2 = 1 (1)

QCL treats qubits as quantum registers of length 1.

qcl> qureg a[1]; qureg b[1]; // allocate 2 qubits

qcl> Rot(-pi/3,a); // rotate 1st qubit

qcl> H(b); // Hadamard Transformation

Definition 2. (Machine State). The machine state |�〉 ∈ H of an n-qubit quantum
computer is the state of a composite system of n identical qubits, i.e., H = B⊗n =
C2n

.
QCL—if used together with a numerical simulator—provides debugging

functions which allow the inspection of the otherwise unobservable machine state.
In the example below |�〉 = |00〉 ⊗ (H |0〉) ⊗ Rx(π/3) |0〉:

qcl> dump; // show product state as generated above

: STATE: 2 / 4 qubits allocated, 2 / 4 qubits free

0.612372 |0000> + 0.612372 |0010> + 0.353553 |0001> + 0.353553 |0011>

Definition 3. (Quantum Register). An m qubit quantum register s is a sequence
of mutually different qubit positions 〈s0, s1 . . . sm−1〉 of some machine state |�〉 ∈
C2n

with n ≥ m.
Using an arbitrary permutation π over n elements with πi = si for i < m, a

unitary reordering operator �s is defined as (see also 2.2.3)

�s |d0, d1 . . . dn−1〉 = ∣∣dπ0 , dπ1 . . . dπn−1

〉
(2)

Quantum registers are the fundamental quantum data-type in QCL. As they
contain the mapping between the symbolic quantum variables and the actual qubits
in the quantum computer, they are the primary interface between the classical
frontend and the quantum backend of the hardware architecture, as the machine
state can only be accessed via registers.

Quantum registers are dynamically allocated and can be local. Temporary
registers can be created by using the qubit—(q[n]), subregister—(q[n:m]), and
concatenation-operators (q&p).
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Fig. 3. 3-qubit register operator on a 5-qubit machine.

2.2. Operators

2.2.1. Register Operators

Definition 4. (Register Operator). The register operator U (s) for an m-qubit
unitary operator U : C2m → C2m

and an m-qubit quantum register s on an n-qubit
quantum computer is the n-qubit operator

U (s) = �†
s (U ⊗ I (n − m)) �s (3)

with an reordering operator �s and the k-qubit identity operator I (k) (see Fig. 3
for an example).

All operators in QCL are register operators and can also have an arbitrary
number of classical parameters. The length of the operand-registers is passed as
an additional implicit parameter.

operator dft(qureg q) { // Quantum Fourier Transform

const n=#q; // set n to length of input

int i; int j; // declare loop counters

for i=1 to n {

for j=1 to i-1 { // apply conditional phase gates (see 2.3.2)

if q[n-i] and q[n-j] { Phase(pi/2^(i-j)); }

}

H(q[{n-i]); // qubit rotation

}

flip(q); // swap bit order of the output

}

QCL operators are unitary and have mathematical semantics i.e., their effect
must be reproducible and may only depend on the specified parameters. This
especially excludes

• dependencies on the program state (e.g., global variables)
• side effects on the program state
• user input and calls to random()
• nonunitary quantum operations (i.e., calls to measure and reset)
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For any QCL operator, the adjoint operator is determined on the fly if the call
is prefixed with the inversion-flag (!).2

qcl> qureg q[2]; // allocate a 2-qubit register

qcl> dft(q); // discrete Fourier transform

[2/32] 0.5 |00> + 0.5 |01> + 0.5 |10> + 0.5 |11>

qcl> !dft(q); // inverse transform

[2/32] 1 |00>

2.2.2. Quantum Data Types

Classical programming languages often allow to impose access restrictions
on variables and subroutine parameters. This is equally done to prevent subsequent
programming errors, as to provide information to the compiler to allow for more
efficient optimizations.

QCL extends this concept to quantum registers by introducing quantum data
types to limit the ways how operators may effect the machine state.

Type Restriction

qureg none
quconst invariant to all suboperators
quvoid has to be empty when the uninverted operator is called
quscratch has to be empty before and after the call

Definition 5. (Invariance of Registers). A quantum register c is invariant to a
register operator U (s, c) iff U |i〉s |j 〉c = (

Uj |i〉s

) |j 〉c with unitary Uj .

Definition 6. (Empty Registers). A register e is empty iff |�〉 = |0〉e

∣∣ψ ′〉

2.2.3. Quantum Functions

One important aspect of quantum computing is, that—due to the linearity of
unitary transformations—an operator applied to a superposition state |�〉 is simul-
taneously applied to all basis vectors that constitute |�〉 (quantum parallelism)
since

U
∑

i

ci |i〉 =
∑

i

ci(U |i〉) (4)

2 Internally, this is achieved by recursively caching all suboperator calls and executing them in reverse
order with swapped inversion-flags.
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In many cases U implements a reversible boolean, or, equivalently, a bijec-
tive integer function, by treating the basis vectors merely as bitstrings or binary
numbers.

Definition 7. A n-qubit quantum function is a unitary operator of the form
U : |i〉 → |πi〉 with some permutation π over Z2n .

Quantum functions are implemented by the QCL subroutine-type qufunct.

qufunct inc(qureg x) { // increment register

int i;

for i = #x-1 to 1 step -1 {

CNot(x[i],x[0:i-1]); // apply controlled-not from

} // MSB to LSB

Not(x[0]);

}

To enforce the above restrictions, the 4 QCL subroutines types form a calling
hierarchy, i.e., routines may only invoke subroutines of the same or a lower level.

Subroutine S � Invertible Description

procedure all all no classical control structure
operator none unitary yes general unitary operator
qufunct none permutation yes quantum function
functions none none no mathematical functions

The columns S and ψ denote the allowed side-effects on the classical program
state and the quantum machine state.

2.2.4. Irreversible Functions

One obvious problem in QC is its restriction to reversible computations.
Consider a simple operation like computing the parity of a bitstring

parity′ : |i〉 → |b(i) mod 2〉 with b(n) = n mod 2 + b(	n/2
), b(0) = 0
(5)

Clearly, this operation is nonreversible since parity′ |1〉 = parity′ |2〉, so
parity′ is not an unitary operator. However, if we use an additional target
register, then we can define an operator parity which matches the condition
parity |i, 0〉 = |i, b(i) mod 2〉.
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qufunct parity(quconst x,quvoid y) {

int i;

for i = 0 to #x-1 {

CNot(y,x[i]); // flip parity for each set bit

}

}

In QCL, an operator F : |x〉x |0〉y → |x〉x |f (x)〉y is declared as qufunct
with at least one invariant (quconst) argument register x and one empty (quvoid)
target register y as parameter. The result for F |x〉x |y �= 0〉y is unspecified to allow
for different ways to accumulate the result. So F ′ : |x, y〉 → |x, y ⊕ f (x)〉 and
F ′′ : |x, y〉 → ∣∣x + y mod 2k

〉
are merely considered to be different implementa-

tions of the same quantum function.

2.2.5. Scratch Space Management

While quantum functions can be used to work around the reversible nature
of QC, the necessity to keep a copy of the argument is a problem, as longer
computations will leave registers filled with intermediate results.

Let F be a quantum function with the argument register x (quconst), the
target register y (quvoid), and the scratch register s (quscratch)

F (x, y, s) : |i〉x |0〉y |0〉s → |i〉x |f (i)〉y |j (i)〉s (6)

F fills the register s with the temporary junk bits j (i). To reclaim s, QCL transpar-
ently allocates an auxiliary register t and translates F into an operator F ′ which
is defined as (Bennett, 1973)

F ′(x, y, s, t) = F †(x, t, s) fanout(t, y) F (x, t, s) (7)

The fanout operator is a quantum function defined as

fanout : |i〉 |0〉 → |i〉 |i〉 (8)

The application of F ′ restores the scratch register s and the auxiliary register t to
|0〉 while preserving the function value in the target register y:

|i, 0, 0, 0〉 → |i, 0, j (i), f (i)〉 → |i, f (i), j (i), f (i)〉 → |i, f (i), 0, 0〉 (9)

2.3. Quantum Conditions

2.3.1. Conditional Operators

Classical programs allow the conditional execution of code in dependence
on the content of a boolean variable (conditional branching).

A unitary operator, on the other hand, is static and has no internal flow-
control. Nevertheless, we can conditionally apply an n-qubit operator U to a
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quantum register by using an enable qubit and define an n + 1 qubit operator U ′

U ′ =
(

I (n) 0

0 U

)
(10)

So U is only applied to base-vectors where the enable bit is set. This can be easily
extended to enable-registers of arbitrary length.

Definition 8. A conditional operator U[[e]] with the enable register e is a unitary
operator of the form

U[[e]] : |i, ε〉 = |i〉 |ε〉e →
{

(U |i〉) |ε〉e if ε = 111 . . .

|i〉 |ε〉e otherwise

A conditional version of the increment operator from 2.2.3. can be explicitly
implemented as

qufunct cinc(qureg x,quconst e) {

int i;

for i = #x-1 to 1 step -1 { CNot(x[i],x[0:i-1] & e); }

CNot(x[0],e);

}

QCL can automatically derive U[[e]] for an operator U if its declaration is
prefixed with cond.

cond qufunct inc(qureg x,quconst e) { ... }

The enable register can be set by a quantum if-statement and QCL will
transparently transform the defined operator into its conditional version when
necessary.

2.3.2. Quantum if-Statement

Just like the concept of quantum functions allows the computation of ir-
reversible boolean functions with unitary operators, conditional operators allow
conditional branching depending on unobservable qubits.

Given the above definitions, the statement if e { inc(x); } is equivalent
to the explicit call of cinc(x,e) and if e { inc(x); } else { !inc(x); }
is equivalent to the sequence

cinc(x,e); // conditional increment

Not(e); // invert enable qubit

!cinc(x,e); // conditional decrement

Not(e); // restore enable qubit
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Quantum if-statements can be nested. Since operators within the if- and else-
branches are transformed into their conditional versions, they must be declared
cond and must not operate on any qubits used in the condition.

2.3.3. Complex Conditions

Conditions in quantum if-statements are not restricted to single qubits, but
can contain any boolean expression and also allow the mixing of classical and
quantum bits.

qcl> qureg q[4]; qureg b[1]; qureg a[1];

qcl> H(a & b); // prepare test-state

[6/32] 0.5 |000000> + 0.5 |010000> + 0.5 |100000> + 0.5 |110000>

qcl> if a and b { inc(q); }

[6/32] 0.5 |000000> + 0.5 |010000> + 0.5 |100000> + 0.5 |110001>

qcl> if a or b { inc(q); }

[6/32] 0.5 |000000> + 0.5 |010001> + 0.5 |100001> + 0.5 |110010>

qcl> if not (a or b) { inc(q); }

[6/32] 0.5 |000001> + 0.5 |010001> + 0.5 |100001> + 0.5 |110010>

QCL produces a sequence of CNot-gates to evaluate a quantum condition.3

If necessary, scratch qubits are transparently allocated and uncomputed again.

2.3.4. Forking if-Statement

If the body of a quantum if-statement contains statements which change the
program state (e.g., assignments to local variables), then subsequent operator calls
may differ, depending on whether the if- or the else-branch has been executed.

In that case, QCL follows all possible classical paths throughout the op-
erator definition (forking), accumulates the conditions of all visited quantum
if-statements, and serializes the generated sequence of operators.

cond qufunct demux(quconst s,qureg q) {

int i;

int n = 0;

for i=0 to #s-1 { // accumulate content of

if s[i] { n=n+2^i; } // selection register in a

} // classical variable

Not(q[n]); // flip selected output qubit

}

Figure 4 shows the quantum circuit (Nielsen and Chuang, 2000) generated
by demux(s,q) in the case of a 2-qubit selection register s.

Forking if-statements may only appear within an operator definition to assure
that the different execution threads can be joined again.

3 Internally, this is achieved by transforming a quantum condition into its exclusive disjunctive normal
form (Bani-Eqbal, 1992).
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Fig. 4. A quantum demultiplexer.

3. CONCLUSIONS

Throughout the history of classical computing, hardware development has
always been accompanied by a corresponding improvement of programming
methodology. The formalism of quantum circuits—the moral equivalent to hand-
written machine code—seems inadequate for quantum computers with more than
a couple of qubits, so more abstract methods will eventually be required.

We have demonstrated how well established concepts of classical program-
ming languages like subroutines, local variables, or conditional branching can be
ported to the field of quantum computing. Besides providing a new level of ab-
straction, we also hope that a quantum programming language which semantically
integrates those concepts will allow for a better and more intuitive understanding
of nonclassical algorithms.
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